Structure Reports

Online
ISSN 1600-5368

Cheng-Juan Li, Jian-Min Dou,* Da-Cheng Li and Da-Qi Wang

Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: jmdou@lctu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.034$
$w R$ factor $=0.092$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,6,14,17-Tetraoxa-23,24-diazatricyclo[17.3.1.1 ${ }^{8.12}$]-tetracosa-1(23),8,10,12(24),19,21-hexaene (bis-pyridino-18-crown-6)

The title compound, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, lies about a centre of inversion. The four ether O atoms lie in a plane, with the two strictly parallel pyridine rings located on either side of this plane; their N atoms point in opposite directions.

Comment

There has been a growing interest in the synthesis of macrocyclic polyethers, especially those containing one or more pyridine units. Pyridine crown ethers coordinate readily with transition metal cations (Cane \& Buchwald, 1977; Lamb et al., 1980; Tummler et al., 1977) and neutral molecules (van Staveren et al., 1984; Grootenhuis et al., 1986), as the pyridine N atom is a good electron donor. Although the title compound, bis-pyridino-18-crown-6, (I), has been synthesized previously (Newcomb et al., 1977), its crystal structure has not been investigated to date and is reported here (Fig. 1).

(I)

The molecule lies on a centre of inversion at the centre of the 18 -crown ring. The four ether O atoms lie in a plane. The two strictly parallel pyridine rings are located on either side of this plane with their N atoms pointing in opposite directions. The angle between the $\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{O} 1 A / \mathrm{O} 2 A$ plane and those of the pyridine rings is $82.06(4)^{\circ}$. The cavity of the crown ether is distorted to be thinner and longer than that observed for tetramethyl-bis-pyridino-18-crown-6, while the average $\mathrm{C}-\mathrm{O}$ bond length ($1.424 \AA$) is similar (Bradshaw et al., 1990).

Experimental

Bis-pyridino-18-crown-6 was synthesized according to the method of Bradshaw et al. (1990). Colourless single crystals of (I) were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether (1:1 v / v) after 2 d (m.p. 418420 K).

Received 8 December 2005
Accepted 20 December 2005

Crystal data

$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \\ & M_{r}=330.38 \\ & \text { Orthorhombic, Pbc } \\ & a=14.797(4) \AA \\ & b=7.2616(19) \AA \\ & c=15.191(4) \AA \\ & V=1632.2(7) \AA^{3} \\ & Z=4 \\ & D_{x}=1.344 \mathrm{Mg} \mathrm{~m}^{-3} \end{aligned}$

Data collection

Siemens SMART CCD area-

detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.951, T_{\text {max }}=0.962$
7873 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.092$
$S=1.07$
1449 reflections
109 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 3983
reflections
$\theta=2.7-25.0^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless $0.53 \times 0.48 \times 0.41 \mathrm{~mm}$

1449 independent reflections
1198 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-15 \rightarrow 17$
$k=-8 \rightarrow 8$
$l=-18 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.044 P)^{2}\right. \\
& \quad+0.3434 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.16 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \text { e } \AA^{-3}
\end{aligned}
$$

All H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H , and $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Natural Science Foundation of Shandong Province (grant No. Y2003B01) and from Liaocheng University, People's Republic of China.

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The suffix A indicates the symmetry operation $(1-x,-y, 1-z)$. H atoms have been omitted.

References

Bradshaw, J. S., Huszthy, P., McDaniel, C. W., Zhu, C. Y., Dalley, N. K., Izatt, R. M. \& Lifson, S. (1990). J. Org. Chem. 55, 3129-3137.

Cane, D. E. \& Buchwald, S. L. (1977). J. Am. Chem. Soc. 99, 6134-6136.
Grootenhuis, P. D. J., Uiterwijk, J. W. H. M., Reinhoudt, D. N., van Staveren, C. J., Sudholter, E. J. R., Bos, M., van Eerden, J., Klooster, W. T., Kruise, L. \& Harkema, S. (1986). J. Am. Chem. Soc. 108, 780-788.
Lamb, J. D., Izatt, R. M., Swain, C. S. \& Christensen, J. J. (1980). J. Am. Chem. Soc. 102, 475-479.
Newcomb, M., Timko, J. M., Walba, D. M. \& Cram, D. J. (1977). J. Am. Chem. Soc. 99, 6392-6398.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Staveren, C. J. van, den Hertog, H. J. , Reinhoudt, D. N., Uiterwijk, J. W. H. M., Kruise, L. \& Harkema, S. (1984). J. Chem. Soc. Chem. Commun. pp. 14091411.

Tummler, B., Maass, G., Weber, E., Wehner, W. \& Vogtle, F. (1977). J. Am. Chem. Soc. 99, 4683-4690.

[^0]: © 2006 International Union of Crystallography All rights reserved

